Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,859 result(s) for "Anti-Inflammatory Agents - chemistry"
Sort by:
Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways
Chronic inflammation is triggered by numerous diseases such as osteoarthritis, Crohn's disease and cancer. The control of the pro-inflammatory process can prevent, mitigate and/or inhibit the evolution of these diseases. Therefore, anti-inflammatory drugs have been studied as possible compounds to act in these diseases. This paper proposes a computational analysis of eugenol in relation to aspirin and diclofenac and analyzing the ADMET profile and interactions with COX-2 and 5-LOX enzymes, important enzymes in the signaling pathway of pro-inflammatory processes. Through the analysis of ADMET in silico, it was found that the pharmacokinetic results of eugenol are similar to NSAIDs, such as diclofenac and aspirin. Bioinformatics analysis using coupling tests showed that eugenol can bind to COX-2 and 5-LOX. These results corroborate with different findings in the literature that demonstrate anti-inflammatory activity with less gastric irritation, bleeding and ulcerogenic side effects of eugenol. The results of bioinformatics reinforce studies that try to propose eugenol as an anti-inflammatory compound that can act in the COX-2/5-LOX pathways, replacing some NSAIDs in different diseases.
Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies
A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.
Pyrrole and Fused Pyrrole Compounds with Bioactivity against Inflammatory Mediators
A new series of pyrrolopyridines and pyrrolopyridopyrimidines have been synthesized from aminocyanopyrroles. The synthesized compounds have been characterized by FTIR, ¹H-NMR and mass spectroscopy. The final compounds have been screened for in vitro pro-inflammatory cytokine inhibitory and in vivo anti-inflammatory activity. The biological results revealed that among all tested compounds some fused pyrroles, namely the pyrrolopyridines and , show promising activity. A docking study of the active synthesized molecules confirmed the biological results and revealed a new binding pose in the COX-2 binding site.
The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis
Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
Unravelling the Biological Activities of the Byttneria pilosa Leaves Using Experimental and Computational Approaches
is locally known as Harijora, and used by the native hill-tract people of Bangladesh for the treatment of rheumatalgia, snake bite, syphilis, fractured bones, elephantiasis and an antidote for poisoning. The present study was carried out to determine the possible anti-inflammatory, analgesic, neuropharmacological and anti-diarrhoeal activity of the methanol extract of leaves (MEBPL) through in vitro, in vivo and in silico approaches. In the anti-inflammatory study, evaluated by membrane stabilizing and protein denaturation methods, MEBPL showed a significant and dose dependent inhibition. The analgesic effect of MEBPL tested by inducing acetic acid and formalin revealed significant inhibition of pain in both tests. During the anxiolytic evaluation, the extract exhibited a significant and dose-dependent reduction of anxiety-like behaviour in mice. Similarly, mice treated with MEBPL demonstrated dose-dependent reduction in locomotion effect in the open field test and increased sedative effect in the thiopental sodium induced sleeping test. MEBPL also showed good anti-diarrheal activity in both castor oil induced diarrheal and intestinal motility tests. Besides, a previously isolated compound (beta-sitosterol) exhibited good binding affinity in docking and drug-likeliness properties in ADME/T studies. Overall, is a biologically active plant and could be a potential source of drug leads, which warrants further advanced study.
Anti-Inflammatory Potential of n-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption in Improving Microvascular Endothelial Function of Healthy Individuals-Clinical Trial
The effects of consumption of n-3 polyunsaturated fatty acids (n-3 PUFAs) enriched hen eggs on endothelium-dependent and endothelium-independent vasodilation in microcirculation, and on endothelial activation and inflammation were determined in young healthy individuals. Control group ( = 21) ate three regular hen eggs/daily (249 mg n-3 PUFAs/day), and n-3 PUFAs group ( = 19) ate three n-3 PUFAs enriched hen eggs/daily (1053 g n-3 PUFAs/day) for 3 weeks. Skin microvascular blood flow in response to iontophoresis of acetylcholine (AChID; endothelium-dependent) and sodium nitroprusside (SNPID; endothelium-independent) was assessed by laser Doppler flowmetry. Blood pressure (BP), body composition, body fluid status, serum lipid and free fatty acids profile, and inflammatory and endothelial activation markers were measured before and after respective dietary protocol. Results: Serum n-3 PUFAs concentration significantly increased, AChID significantly improved, and SNPID remained unchanged in n-3 PUFAs group, while none was changed in Control group. Interferon-γ (pro-inflammatory) significantly decreased and interleukin-10 (anti-inflammatory) significantly increased in n-3 PUFAs. BP, fat free mass, and total body water significantly decreased, while fat mass, interleukin-17A (pro-inflammatory), interleukin-10 and vascular endothelial growth factor A significantly increased in the Control group. Other measured parameters remained unchanged in both groups. Favorable anti-inflammatory properties of n-3 PUFAs consumption potentially contribute to the improvement of microvascular endothelium-dependent vasodilation in healthy individuals.
Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches
Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. AgNPs play an important role in nanoscience and nanotechnology, particularly in nanomedicine. Although several noble metals have been used for various purposes, AgNPs have been focused on potential applications in cancer diagnosis and therapy. In this review, we discuss the synthesis of AgNPs using physical, chemical, and biological methods. We also discuss the properties of AgNPs and methods for their characterization. More importantly, we extensively discuss the multifunctional bio-applications of AgNPs; for example, as antibacterial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anti-cancer agents, and the mechanism of the anti-cancer activity of AgNPs. In addition, we discuss therapeutic approaches and challenges for cancer therapy using AgNPs. Finally, we conclude by discussing the future perspective of AgNPs.
Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing
Inflammation is a physiological response to different pathological, cellular or vascular damages due to physical, chemical or mechanical trauma. It is characterized by pain, redness, heat and swelling. Current natural drugs are carefully chosen as a novel therapeutic strategy for the management of inflammatory diseases. Different phytochemical constituents are present in natural products. These phytochemicals have high efficacy both in vivo and in vitro. Among them, flavonoids occur in many foods, vegetables and herbal medicines and are considered as the most active constituent, having the ability to attenuate inflammation. Kaempferol is a polyphenol that is richly found in fruits, vegetables and herbal medicines. It is also found in plant-derived beverages. Kaempferol is used in the management of various ailments but there is no available review article that can summarize all the natural sources and biological activities specifically focusing on the anti-inflammatory effect of kaempferol. Therefore, this article is aimed at providing a brief updated review of the literature regarding the anti-inflammatory effect of kaempferol and its possible molecular mechanisms of action. Furthermore, the review provides the available updated literature regarding the natural sources, chemistry, biosynthesis, oral absorption, metabolism, bioavailability and therapeutic effect of kaempferol.
Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.